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Abstract

The present paper deals with the laminar forced convection in a parallel-plane channel, and is aimed to investigate the effect of conducting
walls. On the external boundaries of the duct walls a thermal boundary condition is prescribed, such that the wall heat flux longitudinally varies
with sinusoidal law. The local energy balance equation is written separately for the fluid and the solid regions, with reference to the fully developed
regime, and then solved both analytically and numerically. Moreover, the local and average Nusselt numbers in a longitudinal period are evaluated.
The average Nusselt number, if regarded as a function of the dimensionless pulsation, displays an interesting feature. In fact, for all the considered
cases, it has a minimum, so that there exists a value of the dimensionless pulsation such that the heat exchange between the fluid and the solid

wall is considerably inhibited.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The present paper aims to extend a previous analysis, per-
formed under the hypothesis of a temperature field longitudi-
nally varying with sinusoidal law [1]. The study referred to
the case of a longitudinally periodic boundary condition given
by the temperature distribution on the external boundary of the
solid walls.

There are many applications consisting of periodic repeti-
tions of a particular geometric or heating unit. Examples are,
for instance, chips located on a circuit board, internally finned
ducts, heat exchangers with regularly spaced turbulence pro-
moters, cooling system of nuclear reactors. As is well known,
although in the case of prescribed temperature boundary condi-
tions the flow in these geometries is asymptotically isothermal,
this does not happen in the case of prescribed wall heat flux.

* Corresponding author.
E-mail addresses: antonio.barletta@unibo.it (A. Barletta),
eugenia.rossidischio@unibo.it (E. Rossi di Schio), gianni.comini @uniud.it
(G. Comini), dagaro.paola@uniud.it (P. D’ Agaro).

1290-0729/$ — see front matter © 2008 Elsevier Masson SAS. All rights reserved.

doi:10.1016/j.ijthermalsci.2008.06.003

Some papers deal with periodic thermal profiles induced by pe-
riodic geometries, with reference both to forced [2,3] and mixed
convection [4].

In the literature, boundary conditions implying a periodic
change of the heat flux have deserved great attention, with ref-
erence to forced convection [5-8]. Pearlstein and Dempsey [5]
report the temperature field distribution and the bulk tempera-
ture in the thermal inlet region, for various values of the Peclet
number. An axially varying wall heat flux is assumed. In [6]
and [7], the thermally developed forced convection is investi-
gated analytically, by considering and by neglecting axial heat
conduction effects. Reference is made to a cylindrical duct with
circular cross section and to a wall heat flux which axially varies
with sinusoidal law. It is shown that in the thermally developed
region the temperature distribution is given by the sum of a lin-
ear and a periodic function of the axial coordinate. Moreover,
in [8], the effect of a transverse magnetic field is taken into ac-
count. In none of the above mentioned papers conducting walls
are considered.

The aim of the present paper is to investigate the conjugate
heat transfer in a parallel plane channel, by considering the ef-
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Nomenclature

B dimensionless pulsation defined in Eq. (7)
C1, C3, C3 constants defined in Eq. (22)
C1, C2, C3 constants defined in Eq. (39)

1F1 confluent hypergeometric function

f complex dimensionless function

G complex dimensionless parameter

H complex dimensionless parameter

i imaginary unit

k thermal conductivity

L length of the computational domain

Nu Nusselt number, defined by Eq. (24)

Nu average value of the Nusselt number in a longitudi-
nal period, defined by Eq. (31)

n positive integer

Pe Peclet number, defined in Eq. (7)

q thermal heat flux prescribed on the external bound-
ary of the channel walls

q0 mean value of the thermal heat flux prescribed on
the external boundary of the channel walls

T temperature

To inlet temperature

U longitudinal component of the fluid velocity

Up mean value of the fluid velocity

y spatial coordinate

Yo internal channel half-height

Y1 external channel half-height

Z longitudinal coordinate

Zi longitudinal position of the inlet section

Greek symbols

o thermal diffusivity

B pulsation

y dimensionless parameter, defined in Eq. (7)

z longitudinal dimensionless coordinate, defined in
Eq. (7)

n spatial dimensionless coordinate, defined in Eq. (7)

0 dimensionless temperature, defined in Eq. (7)

6 dimensionless temperature, defined in Eq. (36)

A dimensionless parameter, defined in Eq. (1)

& complex dimensionless variable

o dimensionless half-width of the channel, defined in
Eq. (7)

i dimensionless heat flux at the interface, defined by
Eq. (35)

Do dimensionless heat flux on the external boundary,
defined by Eq. (9)

10} dimensionless complex heat flux at the interface,
defined by Eq. (29)

v dimensionless complex temperature

v dimensionless complex temperature, defined in
Eq. (36)

Operators

v dimensionless gradient

Subscripts

b bulk quantity

f fluid

s solid

fect of forced convection in the fluid and conduction in the
channel walls. On the external boundary of the channel walls
a thermal boundary condition is prescribed, such that the heat
flux is a periodic function of the longitudinal coordinate having
mean value gg. Axial heat conduction and viscous dissipation
in the fluid will be neglected, and reference will be made to
the fully developed region. The energy local balance equation
will be solved both analytically, by employing the confluent
hypergeometric functions theory, and numerically, by employ-
ing a finite element procedure described, in detail, in [9,10].
The numerical procedure, designed for problems characterized
by complex geometries and boundary conditions, had been re-
peatedly validated by comparison with numerical solutions and
experimental results concerning uncoupled problems (see, for
example, Refs. [11,12]). Here the validation process is com-
pleted for situations in which conduction and convection effects
are simultaneously present.

2. Mathematical model

Let us consider an infinitely long parallel-plane channel. The
two channel walls, having distance 2y, are y; — yo thick. Due

to the symmetry on the plane y = 0, the analysis will be de-
voted to the region 0 < y < y;. The longitudinal section of the
parallel-plane channel, together with the boundary conditions,
is reported in Fig. 1.

Let us consider a Newtonian fluid with constant thermophys-
ical properties, in a fully developed forced convection regime,
such that viscous dissipation and longitudinal heat conduction
in the fluid can be neglected. Let us assume that on the exter-
nal boundaries of the channel walls, a heat flux distribution is
prescribed, namely:

oT
ko—

s =qo|1 + Asin(Bz)|. (1
9y ly=y, [ |

In the fully developed region the local energy balance equation
for the fluid is given by

U8T 92T )
e,
9z f8y2

while for the solid (yp < y < y1) one has

2T  9°T
WJFB—ZZ =0, 3)
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Fig. 1. Channel section.

where the subscript f refers to the fluid and U represents
the velocity distribution in the fluid, given by the well-known
Poiseuille profile

3U 2
o= 21- ()]

The equations have to be solved together with the boundary
condition, taking into account the symmetry at y =0

aT

Fr 0, ®)

y=0

and with the matching conditions at y = yo, namely

oT oT
Tr(yo,2) = Ts(y0, 2), kfa— =ks2+ (6)
Y1 fy=yo Yls,y=yo
Let us introduce the following dimensionless quantities:
T —T,
=2 =2 o=2 g=k—0
Yo Yo Yo 400
k U
y=t pe=220 B _pepy,. 7
kg af

It is then possible to write the dimensionless local balance equa-
tions for the fluid and the solid regions respectively as:

3 30 1 3%

—( —172)—:——, O<n<l,

2 ¢ Pedn?

3% 90

with the boundary condition
00 . (B¢

Yo =1+ Asin| — | = ¢, ({), €))
0N |5 = Pe

with the symmetry condition at n =0

a0

_ =0, 10
o (10)

n=0

and with the matching conditions at n = 1

a6

0r(1,8)=05(1,2), o

L

=y— 11
o J/an (11)

s,n=1
For longitudinal positions sufficiently distant from the inlet sec-

tion of the duct, placed at z = z;, one can assume that the
solution of Eq. (8) has the form:

om0 = £ 4 ao(n) 0()'(“)
n,C—EJronJrlnsmE

0 B¢ 12
+ 2(7I)COS<E>, (12)

where the constant A and the functions 6y(n), 61(n) and 6,(n)
can be determined by substituting Eq. (12) into Eqs. (8)—(11).
One obtains three boundary value problems:

0<n<1l—d6m/dn*=(3/2)A0 —n?),
1 <n<o— d%6y(n)/dn* =0,

dtp/dnl;=0 =0,

8o, r (1) = 6o, 5 (1),

dbo/dn| f,p=1 =y do/dn|s n=1,

vy dbp/dnly=c = 1;

(13)

0<n<1—d6®n/dn*=—3/2)(1 —n>) B,
1 <n<s— d?0,(n)/dn? = (B%/Pe?)0 (1),
doy/dnly=0 =0,

01,7 (1) =61 5(1),

doy/dnl f.p=1 =y d61/dnlsn=1,

ydoy/dnly=c = A;

(14)

0<n<1—d*®m)/dn*=(3/2)(1 —n*)Bo:1(n),

1 <n<s— d%0,(n)/dn? = (B?/Pe®)02(1),

d92/d77|17=0 =0, (15)
62, (1) = 62,5(1),

dB>/dn| f.p=1 =y d62/dnls y=1,

yd6/dnly=s =0.

The boundary value problems described by Eqs. (14) and (15)
can be collapsed into a unique boundary value problem for the
complex function ¥ (n) = 61(n) + i62(n), which represents the
complex temperature. One obtains

0<n<1—dym/dn?* —(3/2)iB(1 —n*)y(n) =0,
1 <n<o— d*y () /dn* — (B*/Pe?)y(n) =0,
dW/an:O =0,

Y1) = (1),

dw/dmf,n:l =Y dl///dms,n:la

ydy/dnly=s = 1.

The solution of the boundary value problem (13) yields

(16)
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3., 1 4
0<n<1—>90(n)=ZAn — S An" + Co,

8
l<n<o— 6o =L+ Dy. (17)
14
By employing the matching conditions, one obtains
5 1
A=1, Dp=Co+-——. (18)
8 v

Since the temperature field, for the considered boundary con-
dition, is defined up to an arbitrary additive constant, one can
assume Cy = 0. One has

3 1
0 1= 6p(n) = =n*>— =n*,
<n<1l—6o(n) Uy
n S5 1
l<np<o—0(n)=—+=——. (19)
y 8 vy

The solution of the boundary value problem (16) allows one
to determine the temperature distribution, for the solid and the
fluid regions separately. For the fluid region 0 < n < 1, if one
redefines the unknown function and the independent variable in
Eq. (16) as

H
E=—T0  f=c iy,

2
where H = (i — 1)o/3B, one can easily verify that function
f (&) fulfills the confluent hypergeometric equation [13]. On ac-
count of the symmetry condition in n = 0, one obtains

2 24+ H 1 H
=C1 e P T o =), 20
Y =Cie i\ —5 373 (20)
where C; is an integration constant to be determined through
the matching conditions and | Fj is the confluent hypergeomet-
ric function.
For the solid region, 1 <1 < o, one has

Y(n) =

where the integrations constants have to be obtained prescribing
the boundary condition in n = o and the matching conditions.
Finally, one obtains

 U=BIP Py [(By) + CaleB/Pe 4+ 12008/ Pe]
1P (B L el /4 ’

Cy = C3e—ZGB/Pe + &&e—aB/Pe
v B ’

eBF0)/Pepe(GPe + By )

Cae"B/Pe 4 e nB/Pe Q1)

Cy=— , (22
T T By[e2Bo/P(G Pe—By) + ¢2B/P¢(G Pe +By)] @2)
where the parameter
HQ+H) \F(%H 3, -4y g
= ST - — (23)
4 F (B L 2

has been introduced. By employing the dimensionless quanti-
ties, one can write the Nusselt number as

NM—4y0—‘ [T (o0, 2) — Tp(2)] ™
fy=yo
06 _
=4 [00L.0)~6,0)] ! (24)

N fn=1

where 4y is the hydraulic diameter and 6, is the dimensionless
bulk temperature, namely

1
3
0,(¢) = E/G(n, (1 —n?)dn. (25)
0

By employing Eq. (12), the local Nusselt number can be rewrit-
ten as

Nu(t) =4|:@

(%)
sm{ —
dn fin=1 Pe

(%)@l
cos| — |+ —
fin=1 Pe dn [ fy=1

B
x {[90(1) — 6] + [1(1) — 015] sin<P_§)
e
B -1
+[oa1) - 92b]COS(P—§)} , 26)

where 61, and 6, are the real and imaginary part respectively
of

do,
+ J—
dn

1
3
=3 [von(t=)an @)
0

If one integrates with respect to n the first of Eqgs. (16), one
obtains

i d
¢b=—l——w

i
B dn =—=9, (28)

B

fs 77=1
where ¢ = x1 + ix2 is the complex heat flux at the interface,
defined as

(29)

Thus, it is possible to rewrite Eq. (26) as follows:

Nu(¢) = [1 + X1 sm(ff) + xgcos(lj:é)]
A tr0-5] (%)
35 Pe
-1
n [92(1) n %] cos(%)} . (30)

Finally, one can evaluate the average value of the Nusselt num-
ber in a longitudinal period:

27 Pe/B

= f Nu(g) dz. 31)

3. Numerical solution

The use of the finite element method allows one to solve
more complicated forms of the problem under exam. One can
deal with more realistic geometries of the channel including,
for instance, cases with internal longitudinal or transverse fins.
In general, for complicated geometries of the channel and in
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the presence of fins, analytical solutions for the velocity and
temperature fields are not available. The comparison between
the analytical solution available in the elementary case exam-
ined in the present paper and the numerical solution obtained
through a finite-element method appears as very important for
a validation of the procedure.

In stationary regime, with reference to a fluid having con-
stant thermophysical properties, by neglecting internal heat
sources and viscous dissipation effects, the energy equation has
the following dimensionless form:

(u-V)o = Piev%. (32)

In a conjugate heat transfer problem, Eq. (32) is solved for the
whole domain, by assuming, for each region, the corresponding
thermophysical properties and by prescribing u = 0 in the solid
region [11]. The continuity of temperature at the solid—fluid in-
terface is then ensured through the energy equation, and there
is no need to prescribe it explicitly.

For the problem considered here, the computational domain
is a portion of parallel plane channel, in the thermally fully de-
veloped region, having length L = 27/, i.e. length equal to an
oscillation period of the sinusoidal heat flux prescribed on the
external boundary of the wall (Eq. (9)). However, the symmetry
condition (Eq. (10)) allows one to study half of the domain.

The mean value go of the heat flux distribution (Eq. (1))
induces a constant increase of the temperature between the
inlet and outlet sections of the periodic module. As a conse-
quence, the longitudinal conduction fluxes entering and leav-
ing the solid region have the same absolute value and do not
contribute to the energy balance. Therefore, the temperature in-
crease in the fluid region can be directly related to the imposed
flux gg by the expression

2 af
B kr

The same temperature increase is induced also in the solid re-

gion since fluid and solid temperatures cannot diverge. Thus

Eq. (33), written in the dimensionless form

o(n. 72 = 007,00+ = (34)
N ) =600+ =

can be utilized as a boundary condition for the inlet and out-
let sections of both the fluid and solid regions. It can be easily
verified, in fact, that Eq. (34) is perfectly consistent with the
assumed form (12) of the analytical solution.

At this point, to complete the formulation of boundary con-
ditions, we only have to prescribe the temperature level by im-
posing the value of temperature in a single point of the domain.

After obtaining a temperature solution, the dimensionless
heat flux at the solid—fluid interface is evaluated as

a6
vi§)=y— , (35)
BT) s,n=1
while the average Nusselt number is evaluated by Eq. (31).
With reference to the imposed temperature level and to the
analytical expression of the velocity field (Eq. (4)), Egs. (32)

and (34) are solved by the finite element algorithm, described
in detail in [9]. It must be pointed out that the spatial discretiza-
tion, described in [9], is based on the Bubnov—Galerkin method,
so that the numerical diffusivity, typical of the upwind schemes,
is not introduced.

Simulations have been done for Pe = 100 and o = 1.2, for
different values of the dimensionless parameter B (in the range
B =1 + 100), two values of the ratio y (y =0.5,3) and two
values of the parameter A (A = 0.5, 1). The computational grids
already used in [1] are employed once again here. They are
defined on the computational domains having dimensionless
height 1 and dimensionless axial lengths ranging from 200
(for B=1) to w (B = 100). The grids are uniformly spaced
in both the axial and the transverse direction and utilize a con-
stant number of 16 nodes in the transverse direction. In the axial
direction, a number of 501 equally spaced nodes has been ap-
plied in the range B = 5100 and it has been increased to 1501
and 3001 for the cases B =2 and B = 1, respectively. The ac-
curacy reached in this way has been extensively discussed in
[1], demonstrating the achievement of a relative accuracy of the
order of 0.1% for the oscillation amplitude of the interface tem-
peratures.

4. The case A — o0

Let us now discuss the limiting case of purely sinusoidal
temperature distribution. In order to investigate this case, let us
redefine the dimensionless temperature and complex tempera-
ture as

~ 0 P /4

0=—, =—. 36
o U=s (36)
By substituting Eq. (36) into Eq. (12) and by taking the limit
A — 00, one obtains

R «~ . (Bt\ - B¢
0(n,¢) =0, (n)sm(P—> ~I—92(77)00S<—), (37
e Pe

where 6; and 6, are respectively the real and imaginary parts of
the complex functipn ¥ (n). On account of Egs. (20)—(22) and
(36), the function v (n) is given by

o ~ 24+ H 1 H
0<n<1—dp=Cref p( 2222 22,
8 2 2
1<77<a—>@(n):éze”B/PE+é3e_”B/Pe, (38)
where the constants are

é 6(]7(7)B/P6P€/(B]/)+é3[€7B/Pe+e(1720)B/Pe]
l =

A e |
6226387203/1)6_’_&670'3/})6’
By
A eBH0)/Pepe(G Pe4+By)

G = (39)

 By[e2Bo/Pe(G Pe —By) + ¢2B/P¢(G Pe +By)]’

and the parameter G, defined by Eq. (23), has been employed.
A comparison between Egs. (20)—(21) and (38) shows that,

in the limiting case of a sinusoidal wall heat flux with a vanish-

ing mean value, only the integration constants are differently
defined.
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(b)

Fig. 2. Analytical solution: dimensionless temperature distribution 6(n, {) for
o0 =1.2,Pe=100, B=100,A=0.5and y =0.5 (a), y =3 (b).

5. Discussion of the results

In Figs. 2 and 3 the temperature distribution is reported, for
o =1.2 B =10 and Pe = 100. Fig. 2 refers to » = 0.5, while
Fig. 3 refers to A = 1. In both figures, the upper frame refers
to y = 0.5 while the lower one refers to y = 3. The analysis of
the two figures shows that, in the case of a wall less conducting
than the fluid (y = 0.5), both the longitudinal and the transverse
components of the temperature gradient are higher in the solid
wall than in the fluid.

In Figs. 4 and 5 the dimensionless temperature distribution
is reported for Pe = 100, B =100, 0 = 1.2 and A = 1. Fig. 4
refers to y = 0.5, while Fig. 5 refers to y = 3. The temperature
fields have been obtained through the numerical solution.

In Figs. 6 and 7 the heat flux and temperature dimension-
less distributions on the external boundary of the wall n = o
and at the interface n = 1 are reported. Fig. 6 refers to the case

(b)

Fig. 3. Analytical solution: dimensionless temperature distribution 6(», ¢) for
0=12,Pe=100, B=100,A=1and y =0.5 (a), y =3 (b).

y = 0.5, while Fig. 7 refers to the case y = 3. For y = 0.5,
the lag between the interface heat flux, with respect to the pre-
scribed heat flux on the external boundary, is indiscernible,
while the lags between temperature on the external boundary
and temperature at the interface are 0.06zr and 0.177, respec-
tively. For y = 3, the interface heat flux displays a larger phase
lag, namely 0.02rw, while the lags of the temperature at the
external boundary and at the interface are 0.117 and 0.167,
respectively.

In Table 1, values of the average Nusselt number, evaluated
through Eq. (31), are reported versus the parameters B, y and
A, together with the same values obtained numerically. The ta-
ble refers to Pe = 100 and o = 1.2 and shows that the average
Nusselt number is not a monotonic function of B. In fact, for
any given (y, A), first it decreases and then it increases with B.
In the case A = 0, one obtains for the average Nusselt number
the value 140/17. This is the well known asymptotic value for
the fully developed forced convection in a parallel-plane chan-
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Fig. 4. Numerical solution: dimensionless temperature distribution 6(n, ¢), for 0 = 1.2, Pe =100, B =100, A =1 and y =0.5.
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0 w2 b4 3/2n 2n
e

Fig. 6. Numerical solution: dimensionless heat flux ¢ and temperature 6 distri-
butions on the external boundary n = o and at the interface n =1 foro = 1.2,
A=1,y =0.5, Pe=100 and B = 100.

nel, with uniform wall heat flux boundary condition. Moreover,
the table allows a comparison between the two solutions, thus
revealing an excellent agreement. In fact, the relative error be-
tween the average Nusselt number values obtained analytically
and numerically is always less than 0.06%.

In Figs. 8 and 9, the average Nusselt number in a longitu-
dinal period is reported versus the dimensionless pulsation, for
Pe =100 and o = 1.2. In Fig. 8, the influence of the conduct-

-0.30

2 e : : 0.85

32m o

0 /2 T

Fig. 7. Numerical solution: dimensionless heat flux ¢ and temperature 6 distri-
butions on the external boundary n = o and at the interface n =1 for o = 1.2,
A=1,y =3, Pe=100 and B = 100.

ing wall is pointed out. In fact, the two plots reported in this
figure refer to different values of the ratio y. On the other hand,
Fig. 9 refers to two different values of A and to y = 3. Both fig-
ures show that, there exists a small value of the dimensionless
pulsation such that the heat exchange between the fluid and the
solid wall is considerably inhibited, especially when a bound-
ary condition is prescribed such that the oscillation amplitude
of the heat flux is equal to its mean value. Fig. 9 shows that if
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Table 1
Values of the average Nusselt number, for ¢ = 1.2 and Pe = 100. Comparison
between analytical solution and numerical solution (in italics)

B Nu
y =0.5 y=3
r=0.5 r=1 r=0.5 r=1
1 8.23356 8.07832 8.23356 8.07921
8.238 8.082 8.238 8.083
2 8.22852 7.94249 8.22852 7.94429
8.233 7.946 8.233 7.948
5 8.19874 7.64303 8.19879 7.64753
8.203 7.643 8.203 7.650
10 8.13710 7.38607 8.13754 7.39256
8.141 7.387 8.141 7.397
20 8.06627 7.23543 8.06856 7.25588
8.070 7.236 8.072 7.256
50 8.03109 7.25762 8.04274 7.32394
8.034 7.256 8.046 7.322
100 8.04454 7.39072 8.07516 7.53848
8.047 7.387 8.077 7.535
82+ ]
gl (a) 1
78 (b) 1
Nu | ]
76+ .
14} 1
72 : 1 L 1 1 ] 1 n 1 1 L 1 n 1 1 L 1 1 n 1 L 1 :
0 200 400 600 800 1000
B

Fig. 8. Analytical solution: average Nusselt number versus the dimensionless
pulsation, for o = 1.2, Pe=100, A =1 and y =3 (a), y = 0.5 (b).

L (a) 4
8.0 1
f (b)
18| ]
Nu |
76 bl
14F 1
1 1 I L L L 1 n I L 1 1 L L 1 L I L 1
0 200 400 600 800 1000

Fig. 9. Analytical solution: average Nusselt number versus the dimensionless
pulsation, for o = 1.2, Pe =100, y =3 and A = 0.5 (a), A =1 (b).

this oscillation amplitude is reduced, with respect to the mean
value of the prescribed heat flux, the minimum reached by the
average Nusselt number increases.

In Fig. 10, the case A — oo is investigated, i.e. the lim-
iting case of a purely sinusoidal temperature distribution. In

()

Fig. 10. Analytical solution: dimensionless temperature distribution é(n, ¢) for
o =1.2,Pe=100, B=100and y =0.5 (a), y =3 (b) in the case 1 — oo.

Fig. 10 the dimensionless temperature distribution 6 is reported
for Pe =100, B =100 and o = 1.2. The upper frame (a) refers
to y = 0.5, while the lower frame (b) refers to y = 3. The fig-
ure shows that in this limiting case the longitudinal mean value
of the temperature distribution is zero. For this choice of the pa-
rameters, the effect of the flux oscillations are very small in the
fluid region.

6. Conclusions

In the present paper, the laminar forced convection in a
plane-parallel channel is studied by taking into account the
effect of the heat conduction in the channel walls having a fi-
nite thickness. On the external boundary of the channel walls
a heat flux which varies longitudinally with sinusoidal law is
prescribed. The local energy balance equation is solved both
analytically and numerically, with reference to the fully devel-
oped region, where the temperature can be expressed as the sum
of a linear and a periodic function of the longitudinal coordi-
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nate. The analytical and numerical solutions reveal an excellent
agreement.

The local Nusselt number is evaluated, as well as its mean
value in a longitudinal period. The average Nusselt number, if
regarded as a function of the dimensionless pulsation, displays
an interesting feature. In fact, it displays a minimum: there ex-
ists a small value of the dimensionless pulsation such that the
heat exchange between the fluid and the solid wall is consider-
ably inhibited.
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